5G、AI、自动驾驶催生芯片融合大时代,半导体ATE厂商如何乘风而变?
作者:宋元明清 栏目:科技 来源:C114通信网 发布时间:2022-03-16 13:00
全球半导体设备支出进入上升周期5G,物联网,大数据,人工智能以及汽车电子等新技术和新产品的应用,将带来庞大的半导体市场需求,行业将进入新一轮的上升周期,同时也加大了对半导体测试设备的需求
作为唯一贯穿半导体行业设计,制造,封装,测试,应用全过程的重要部分,ATE对产品良率的监控及产品质量的判断至关重要不过,从技术层面看,1960年代发展至今的半导体自动化测试设备在过去的较长一段时间内都没有比较大的革新
但最近几年,巨大的变化正在应用端显现mdash,mdash,与以往单一的驱动力不同,如今,从无人驾驶到虚拟现实,从人工智能到云计算,从5G到IoT,从传感器到SiP,创新应用需求多点爆发,芯片进入融合的时代,这些都对上游测试设备提出了新挑战,也将驱动对更高性能的测试需求。
在这样的趋势下,半导体测试的高级能力需要进一步开发,与此同时,测试设备在整个半导体的价值链上也开始进一步延伸这将给ATE供应商们带来哪些新的机会和挑战会怎样影响半导体测试的未来产业格局和技术趋势
芯片融合时代 ATE厂商的机会与挑战
半导体设备位于产业链的上游,其市场规模伴随着下游半导体的技术发展和市场需求而波动而当前应用端的多点开花,创新迭代加速的趋势下,对于半导体产业链的上游,如设备与材料,制造等技术层面也提出更多新需求,倒逼上游产业链的技术革新和升级
ATE的应用场景贯穿整个IC产业链,主要包括了芯片的设计验证,晶圆制造相关的测试到封装完成后的最终成品测试集微网查阅资料了解到,在过去60多年ATE的发展史上,曾出现一批经典机台比如,数字测试机中,经典的有1980年代的FairchildS10,1990年代Credence SC212,Agilent 83000,2000年代的Teradyne J750,模拟混合测试机中,有1980年代的A360,LTX77,1990年代的Shibasuko WL22,TMT的ASL1000,2000年代的ETS364,AccoTEST STS8200,SoC测试机中,有Advantest V93000,Ultra Flex,存储测试机方面,有经典的DRAM测试机Advantest T5581,Flash测试机Nextest Magum以及Vesatest V66xx系列
不难发现,每一款经典机台的背后都有着一个时代半导体等先进科技的烙印,可以说它们代表着各自所处时代的最新技术趋势和主流驱动力,颇有窥一斑而知全豹之意比如爱德万经典的DRAM测试机T5581,是PC时代全盛时期的重要一环
现在,更大的挑战来自应用端的快速发展,而推动半导体技术和市场发展的驱动力也与以往有所不同5G,AI,自动驾驶等技术带动数字化应用加速,加之疫情导致电子设备需求激增,进一步推动半导体全行业高速增长有分析指出,在多元驱动力下,当前全球半导体产业正处于一波超强周期周期
但机会与挑战并存应用越多元,芯片越复杂,相应的测试也就更复杂,难度和成本都将成倍增长
从半导体制程工艺的演进过程来看,从1990年至2025年,半导体工艺逐渐从0.8um下探至3nm甚至2nm,芯片尺寸越来越小,芯片上晶体管集成度也越来越高这就意味着芯片上集成了更多的模拟,数据传输和接口功能相应地,芯片测试技术也必须随之不断演进
尽管,在整个半导体产业链上,自动化设备是其中很小的一块,但却是很重要的一块资料显示,芯片缺陷相关故障对成本的影响从IC级别的数十美元,到模块级别的数百美元,乃至应用端级别的数千美元因此,测试设备从设计验证到整个半导体制造过程都具有无法替代的重要地位
而在良率提升和成本控制之间的平衡之战中,测试设备要如何适应产业趋势显然,开发测试设备的高级能力已势在必行更重要的是,测试设备的角色在整个产业价值链上也在全方位延伸,需要向左,向右,向上都多走一步mdash,mdash, 向左要与IC设计层面需要结合更多,向右则是在产品层面则是更多需要向系统级测试发展,往上走则是要接入云端,AI,大数据最终由整个云,大数据分析串联起来,以创造更多的客户价值在此趋势下,半导体测试领域更大的技术和市场变革也必将伴随着应用市场的推进而发生
5G,AI,自动驾驶等新兴应用 催生测试的高级能力
5G,AI,自动驾驶等新兴市场正对测试提出更高要求爱德万测试业务发展高级经理葛樑对集微网指出,5G的发展对芯片提出了更高的要求,比如无线部分需要更高性能的射频芯片,5G带来倍增的数据流量需要芯片具有更大数据流通和处理能力,同时5G虚拟化和新应用,也要求手机和基站处理器具有更高的计算能力这不仅使得行业对芯片的需求量大大增加之外,芯片的复杂度也日益攀升相应地,对于芯片测试的要求也同步上升,对测试机的各项指标的要求也更高
葛樑指出,在超大规模数字芯片方面,伴随着人工智能,云计算和自动驾驶的发展,在最新的工艺节点下,一颗芯片上的晶体管量巨大,可以达到几百亿个,芯片的功耗又特别高,同时它又有很多高速通道接口hellip,hellip, 这些功能都要被测试到,对测试设备而言是更高的要求比如,针对芯片内部的高功耗,测试时就需要提供非常大的电源电流,同时电压要在电流大幅变化下非常稳定,而大量的晶体管意味着测试的内容也成倍增加,测试仪器就得提供一个非常高的向量深度,针对高速通道,测试仪器也必须做到更快的速度和更高的边沿精度等等此外,伴随着数字芯片的发展,很多大的数字芯片都开始往Chiplet,先进封装等方向发展,就会需要引入新的测试方法比如,传统的数字芯片是以结构化测试为主,现在则要加入更多功能性测试,许多测试内容要从最终测试和系统级测试向晶圆测试转移,以达到先进封装对Know Good Die的要求
最近几年来,汽车电动化,智能化的变革趋势带来了汽车半导体的巨大增量空间越来越多种类的芯片开始进入车内,且应用场景更为综合,需要所有与5G,AI,计算相关的能力但比起消费类和工业类芯片,汽车芯片的质量和可靠性要求要严苛得多,对于芯片缺陷是零容忍的这对于测试仪器的要求是,它的软件和硬件的稳定性和可靠性要求都非常高,才能在测试芯片时确保质量
目前,全球ATE设备市场的两大头部厂商泰瑞达与爱德万测试,都在积极布局新兴领域,针对5G,AI,物联网,汽车芯片等领域的高性能测试需求展开创新探索比如,爱德万测试率先推出了物联网测试方案,5G芯片测试方案,光收发芯片测试方案,SSD测试方案,移动系统测试方案以及云测试服务等,其测试产品线从晶圆,光罩再到系统级测试,已涵盖了整个芯片的生态系统
值得一提的是,集微网了解到,爱德万测试的系统软件平台已经通过了汽车软件过程改进及能力评定ASPICE,以更好地服务汽车芯片客户长期以来,英飞凌,NXP,ST等汽车芯片领域的主要供应商都和爱德万这样的ATE测试厂商有非常深度广泛的合作关系伴随着最近几年来车联网,智能驾驶,新能源汽车的迅速发展,软件在汽车研发中的占比激增,企业对软件质量管理的需求不断增强
此外,诸如汽车芯片等应用趋势带来更严苛的测试需求的同时,更推动更多创新测试方法因为,异常或缺陷芯片的出现有诸多原因,一些潜在可靠性缺陷在设备发货时不会出现,但它们在不同环境中会以某种方式激活,最终影响整个系统的运行对于追求零缺陷的汽车芯片业而言,通过测试来发现潜在的可靠性缺陷的需求越来越强烈
下一个趋势:挖掘测试设备的数据潜力
半导体是典型的数据密集型产业,每一个环节都会产生大量的数据大量的半导体测试数据价值有待挖掘和利用,因为这不仅可以带来测试效率的提升,保证产品良率,更能通过数据分析优化测试方案,控制成本
过去一两年来,爱德万测试在数据分析,云端布局方面做了很多创新探索比如,发布了TE—Cloud云平台服务,整合各个合作伙伴测试资源,可以为客户提供完整的测试程序开发环境,以及全方位测试外包服务据爱德万测试介绍,这种基于云端技术的远程自动化测试需求一定程度也受到这一两年来疫情等客观环境的推动 ,加速了测试设备厂商的数字化转型进程
其他测试厂商也都在积极尝试泰瑞达也推出了具备远程自动化功能的机台,NI则可以通过该公司开发的模块,采集从实验室到量产车间的数据
至于更深入的数据分析层面,则需要引入更多基于 AI,机器学习等技术的分析手段爱德万测试最近几年来致力于开发半导体云生态解决方案,形成了爱德万测试云解决方案该系统的核心是以数据和分析为重点的平台,是一个基于云的产品和服务的生态系统在此方案旗下,爱德万测试与半导体生态系统综合数据解决方案供应商普迪飞半导体密切合作,并推出了首个联合开发的产品mdash,mdash,爱德万测试云解决方案,动态参数测试,即ACS DPT该解决方案将普迪飞的Exensio数据分析产品与爱德万测试的V93000参数测试系统集成在一起,可以实时优化V93000测试平台上的参数测试,并减少人工交互
集微网了解到,通过将普迪飞的Exensio平台及其数据交换网络与爱德万测试的先进测试设备相结合,爱德万测试就能够为客户提供在半导体供应链中任意节点的数据进行链接和分析的能力,从而帮助客户提高产品良率并减少测试费用。据悉,近两年来,百度Apollo与华能益民煤电公司联合打造无人驾驶矿用卡车,自动驾驶智能调度平台等。目前,他们已经完成了伊敏露天矿的昼夜作业试验,实现了铁锹对中,自主导航,自主卸车和主动避障。它们可以在多岔路口和复杂路况下无人驾驶,并在垃圾场等指定区域完成精确卸货。。
。